Copper Salts Mediated Morphological Transformation of Cu2O from Cubes to Hierarchical Flower-like or Microspheres and Their Supercapacitors Performances

نویسندگان

  • Liang Chen
  • Yu Zhang
  • Pengli Zhu
  • Fengrui Zhou
  • Wenjin Zeng
  • Daoqiang Daniel Lu
  • Rong Sun
  • Chingping Wong
چکیده

Monodisperse Cu2O of different microstructures, such as cubes, flower-like, and microspheres, have been extensively synthesized by a simple polyol reduction method using different copper salts, i.e. (Cu(acac)2, Cu(OH)2, and Cu(Ac)2·H2O). The effects of copper salts on the morphology of Cu2O were investigated in details through various characterization methods, including X-ray diffraction, transmission electron microscopy, scanning electron microscopy and UV-Vis absorption spectra. The effects of morphology on the electrochemical properties were further studied. Among the different structures, Cu2O with the microspheric morphology shows the highest specific capacitance and the best cycling stability compared with those of the other two structures, thus bear larger volume charge during the electrochemical reaction due to the microspheres of small nanoparticles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlled synthesis of micro/nanostructured CuO anodes for lithium-ion batteries

: [email protected] Abstract Three different morphology controlled copper oxide materials (porous microspheres, flower-like, and thorn-like CuO) were prepared by facile and environmentally friendly processes, which were further investigated for their electrochemical properties and performance at lithium-ion battery anodes. CuO microspheres were prepared by simply solution chemistry, whereas flow...

متن کامل

Superhydrophobic polysilsesquioxane/polystyrene microspheres with controllable morphology: from raspberry-like to flower-like structure

Superhydrophobic polysilsesquioxane/polystyrene microspheres with raspberry-like to flower-like structure were fabricated via a cetyltrimethyl ammonium bromide (CTAB)-assisted sol–gel approach. The structure of nanoparticles on microcores could be controlled precisely by simply adjusting the content of the silane precursor: with increasing amount of silane precursor, the microspheres transforme...

متن کامل

Hierarchical Mn2O3 Microspheres In-Situ Coated with Carbon for Supercapacitors with Highly Enhanced Performances

Porous Mn₂O₃ microspheres have been synthesized and in-situ coated with amorphous carbon to form hierarchical C@Mn₂O₃ microspheres by first producing MnCO₃ microspheres in solvothermal reactions, and then annealing at 500 °C. The self-assembly growth of MnCO₃ microspheres can generate hollow structures inside each of the particles, which can act as micro-reservoirs to store biomass-glycerol for...

متن کامل

Direct synthesis of RGO/Cu2O composite films on Cu foil for supercapacitors

Reduced graphene oxide/cuprous oxide (RGO/Cu2O) composite films were directly synthesized on the surface of copper foil substrates through a straight redox reaction between GO and Cu foil via a hydrothermal approach. Characterization of the resultant composites with X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and field emission scanning electron microscope (FESEM) c...

متن کامل

Humic acid-induced synthesis of hierarchical basic copper carbonate/AlOOH microspheres and its enhanced catalytic activity for 4-nitrophenol reduction

One-pot synthesis of basic copper carbonate/AlOOH microspheres with hierarchical structure in the absence and presence of humic acid is presented. The synthesized microspheres are characterized by SEM, EDS, TEM, XRD, FT-IR and TGA data. The catalytic ability of these hierarchical structures has been evaluated with reduction of 4-nitrophenol to 4-aminophenol with excess amount of NaBH4 as a mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015